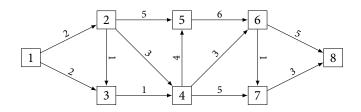
Lesson 12. The Principle of Optimality and Formulating Recursions

0 Warm up

Example 1. Consider the following directed graph. The labels on the edges are edge lengths.



In this order:

а	Find a shortest	nath from	node 1 to	node 8	What is its	length?
a.	Tillu a siloi test	paul Holli	mode i to	noue o.	vv mat 15 ms	ichgui:

Path: Length:

b. Find a shortest path from node 3 to node 8. What is its length?

Path: Length:

c. Find a shortest path from node 4 to node 8. What is its length?

Path: Length:

1 The principle of optimality

- Let *P* be the path $1 \rightarrow 3 \rightarrow 4 \rightarrow 6 \rightarrow 7 \rightarrow 8$ in the graph for Example 1
 - $\circ~$ P is a shortest path from node 1 to node 8, and has length 10 $\,$
- Let P' be the path $3 \rightarrow 4 \rightarrow 6 \rightarrow 7 \rightarrow 8$
 - o P' is a **subpath** of P with length 8
- Is P' a shortest path from node 3 to node 8?
 - $\circ~$ Suppose we had a path Q from node 3 to node 8 with length < 8
 - \circ Let R be the path consisting of edge (1, 3) + Q
 - $\circ~$ Then, R is a path from node 1 to node 8 with length

 $\circ~$ This contradicts the fact that

• Therefore,

In a directed graph with no negative cycles, optimal paths must have optimal subpaths.

- How can we exploit this?
- If optimal paths must have optimal subpaths, then we can construct a shortest path by extending known shortest subpaths
- Consider a directed graph (N, E) with target node $t \in N$ and edge lengths c_{ij} for $(i, j) \in E$
- By the principle of optimality, the shortest path from node *i* to node *t* must be:

edge (i, j) + shortest path from j to t for some $j \in N$ such that $(i, j) \in E$

2 Formulating recursions

- A recursion defines the value of a function in terms of other values of the function
- Let

f(i) = length of a shortest path from node i to node t for every node $i \in N$

- Using the principle of optimality, we can define *f* recursively by specifying
 - (i) the boundary conditions and
 - (ii) the recursion
- The boundary conditions provide a "base case" for the values of f:

• The recursion specifies how the values of *f* are connected:

Example 2.	Use the recursion	defined above to f	find the length	of a shortest pa	ath from nodes 1,	, 8 to node 8 in the
graph for Ex	cample 1. Use your	computations to f	ind a shortest p	oath from node	e 1 to node 8.	

f(8) =	
<i>f</i> (7) =	
f(6) =	
f(5) =	
f(4) =	
f(3) =	
f(2) =	
f(1) =	

Shortest p	ath from	node 1 t	o node 8:
------------	----------	----------	-----------

- Food for thought:
 - o Does the order in which you solve the recursion matter?
 - Why did the ordering above work out for us?

3 Next lesson...

- Dynamic programs are not usually given as shortest/longest path problems as we have done over the past few lessons
- Instead, dynamic programs are usually given as recursions
- We'll get some practice using this "standard language" to describe dynamic programs